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Some New Convergence Acceleration Methods* 
By Claude Brezinski 

Abstract. The E-algorithm is a general extrapolation method which includes most of the 
sequence transformations actually known. Some new convergence acceleration methods are 
derived from the E-algorithm by applying the so-called 0-procedure. The algorithms thus 
obtained are studied. Some theoretical results are proved and numerical examples are given. 

1. Introduction. The general idea for accelerating the convergence of a slowly 
convergent sequence is to transform it into another sequence which will, under 
certain assumptions, converge faster to the same limit. Among the most famous 
sequence transformations are linear summation processes, Richardson polynomial 
extrapolation, Aitken's LY2 process [1] and Shanks' transformation [15] (Wynn's 
?-algorithm [17]). An extensive study of these methods can be found in [3] while 
numerical examples, applications and FORTRAN subroutines are given in [4]. 

Each of these methods usually works in some particular cases since a universal 
method accelerating the convergence of wide classes of sequences cannot exist [10]. 
However numerical examples [11], [16] and also some theoretical results [6], [8] reveal 
that the best sequence transformations (that is those working in most of the 
examples) seem to be Levin's u and v transforms [14] and the 0-algorithm [2]. The 
0-algorithm is a method derived from the rule of the --algorithm by a procedure 
which will be recalled in the next section. 

Recently a general sequence transformation as well as the corresponding recursive 
algorithm was obtained by Havie [13] and Brezinski [5]. This transformation, called 
the E-transformation, includes most of the convergence acceleration methods actu- 
ally known. Thus it seemed interesting to apply to the E-algorithm the same 
procedure which was used to derive the 0-algorithm from the e-algorithm and to 
study the new convergence acceleration methods obtained in that way. It is the aim 
of this paper. 

2. The Procedure 0. Let us first begin by some reminiscences about Shanks' 
transformation and the c-algorithm. 

Let (S0) be a sequence of real or complex numbers. Shanks' transformation 
consists in transforming (Sn) into a set of sequences {(ek(S ))} given by 

ek(Sn ) nHkl(Sfl)/Hk(A2Sfl), 
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where 

Un Un+1 * Un+k-I 

Hk(uJ) = un+ I un2 ... Un+k 
........................ 

Un+k-1 Un+k Un+2k-2 

and n2S = Sn+2 - 2Sn+1 + Sn. 

The computation of the determinants involved in this transformation can be 
avoided by using Wynn's --algorithm [17] 

?(n1) =O ?(on) = n = O, I,.. 

?(n) 
- (n 1) + 

[(n+1) -n (n)ll n, k = 0, 1,. 
-k?1 cEkl I k k 

Wynn proved that 4(n2kQ ek(Sn). Thus the only interesting quantities are those with 
an even lower index; quantities with an odd lower index are intermediate results. 

Let us now explain how the 0-algorithm was derived from the --algorithm. We set 
D(n)-=r[(n+l) - (n)l-. Thus k -L?k ?kJ*U 

(1) 4?1(n) (n ) + D(k)1- 

The sequence (?(nk)+2)n; will be said to converge faster than the sequence 

(c2k )n)n0 if 

A(2 k)+2 =?(AE2 k))5 

where A operates on the upper index n (Au = U -us). Thus a necessary and 
sufficient condition for ( )n,-O to converge faster than (c,+ 1 )n>O is that 

lim A D(nk) l /A?(2nk+l) 
- _ 1. 

n-,oo 

If this condition is not satisfied, then a parameter wk can be introduced in the 
algorithm (i.e., D2nk 1 will be replaced by Wk D2nk+ 1) If Wk is chosen such that 

Wk = - lim 4('nk 1)/AD)1, 
n - oo 

then the convergence will be accelerated. This new algorithm is the so-called 
y-algorithm. In practice, of course, this choice is difficult to operate since it involves 
the computation of a limit. Thus wk will be replaced by 

W(n) 
- 

-lAE(n+k1)1A\D(nk)+ 

This new algorithm is called the 0-algorithm and its rules are 

#(n) = O, 00 ) = S, n = MI 1.... 

(2) (nA-O(?n+- 0%1) 
(2k+2 - 2k Dn) 2k+l n, k = 0,1, 

2k+ 1 

where 

n) =[O(n+ 1) - o^(n) n)1 = 0(n+11) + D(n) 

Thus the 0-algorithm is obtained from the c-algorithm by replacing the rule (1) by 
the rule (2). 

Let us now formalize this way of transforming the rule of an algorithm. Let S be 
the set of sequences of real or complex numbers, and let S' be the subset of S of 
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sequences (bn) such that V n, A bn 7# 0. We consider the applications f, g, and h from 
S X S' into S defined by 

t: 

(( 
~~~~~~an 

)S(bn ) ( n)S(b )=(a-bb f: ((an), (bn)) `M((an), (bn))= (an - A )bJ 

gh ((an), (bJ)" g((an), On)) ( Abn + 

Obviously 

f((an), (bn))= (an) + g((an),(bn)) = (an +) + h((an),(bn)). 

Imperfectly we shall denote by f(an, bn) the nth term of the sequence 
f((an), (bn)) and the same for g and h. 

If, for some n, Abn = 0, then the corresponding member of the sequence under 
consideration does not exist. However, as stated by Wynn [18]: "Although special 
conditions can be imposed upon the numbers (bn) to obviate this breakdown, in the 
exposition of a general theory in which no conditions are imposed upon the initial 
sequence, the results stated concern numbers that can be constructed". 

Let us now consider an algorithm of the form 

(3) c =-an + bn 
We shall say that the procedure 0 has been applied to this algorithm if the rule (3) is 
replaced by the rule 

(4) 6o(Cn) = f(an, bn) 

This algorithm will be called the 0-type algorithm associated with the algorithm (3). 
Thus the 0-algorithm (2) is obtained by applying the procedure 0 to the E-algo- 

rithm (1). It is the 0-type algorithm associated with the --algorithm. 
The application of the procedure 0 can also be interpreted as a linear extrapola- 

tion at zero from the points (bn, an) and (bn+?, an+?) [12]. 

3. 0-Type Algorithms Associated with the E-Algorithm. Let us begin this section 
with a few words on the E-algorithm which is a general extrapolation method 
generalizing the Richardson polynomial extrapolation scheme. The basic idea of this 
sequence transformation is to assume that the given sequence (Sn) to be extrapolated 
behaves like 

(5) Sn = S + algl(n) + ***+ akgk(n) Vn, 

where the gi's are given sequences, and to take S as the extrapolated value of (Sn). S 
is computed by solving the system 

(6) Sn+i = S + algl(n + i) + + akgk(n+i), i,...,k. 

If the sequence (Sn) does not have the exact form (5) then the value of S obtained 
by solving (6) depends on n and k, and we shall denote it by Ek(Sn). It is easy to 
check that Ek(Sn) is given by a ratio of two determinants. This sequence-to-sequence 
transformation has been called the E-transformation, and it includes most of the 
sequence transformations actually known. For example, the choice g, (n ) = A Sn + i- I 
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leads to Shanks' transformation, gi(n) = x' gives Richardson extrapolation process, 
and gi(n) = xn-7ASn/g(n) Levin's transformations. 

A recursive algorithm, the E-algorithm, exists to avoid the computation of the 
determinants involved in the E-transformation. The rules of this algorithm are the 
following 

n= S, gl)n = gi(n), n = 0,1,..., 1,2,. ... 

E(n) Ek-F gk-1,k k-IF k)gl,k 
k (n+ 1) - (n)-- 

gk-1,k gk-I,k 

(n) (n+ 1) (n?+1) (n) 
(n) gk-l,igk-1,k gk-1Ijgk-1,k k > 1, n > 0, i k + 1. 
gk= (n? 1) -(n) 

k In 0ik+I 

gk-1,k gk-I,k 

It has been proved that [5], [13] 

Ek ) = k(Sn). 

Using the notations of the preceding section, this algorithm can also be written 

Ekn = f(En)j, g(n)l k) main rule, 

g9k, f(gk )I I, gk- 1,k), auxiliary rule. 

If we set 

Dn)= g(En)1, gk )Ik), D n) h(En)1, gkn1,k), 

D(n)= g(g(n)'i, g(n)) k) 2n) = h(gnk1 , n gk1 , )1 

then the algorithm becomes (form 1) 

(7) E(n) = E(n)I + D(n) main rule, 

(8) g('l) - gk-2 i + Dnk, i> k, auxiliary rule, 

or (form 2) 

(9) F(n) = FEn E(n1) + jjn) main rule, 

(10) g(n) - g(n -1) + Rn) i > k, auxiliary rule. 

New convergence acceleration methods can be obtained by applying the procedure 0 
to the main rule and/or the auxiliary rule of the first and second forms of the 
E-algorithm. Let us now describe these new methods. 

The T-Algorithm. Obtained by applying the procedure 0 to the main rule (7). 

T(n) = Sn, gT ngf(n), T f(T(n)l ,D(n)), 

with 

Dkn) - gTk(n)lsg n)I k) ) =, f(gk-n,i (nI,) i > k. k g( k-1)1 gk2l,k), 9kj) k(gj1 j, 9ki21,k), i> 

The t-Algorithm. Obtained by applying the procedure 0 to the auxiliary rule (8). 

t(n)= S n go) g-(n) t4n) f(t2n), gk(n1k), 

with 

DIfl? = h(g,1 ?, Dk) i > k, 

D(n) 
- 

h(g(n), i, g(n)l k)i> k. 
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The -Algorithm. Obtained by applying the procedure 0 to the main rule (7) and to 
the auxiliary rule (8). 

T(n) =Sn' g(n) =gi(n), Tk(n) =f (Tk(n)l , D(n)) 

with 

Dkn) = g( Tk-n)l, gk-)I,k) 

g(n) = f (g(n) iD (n?) i> k, 

Dk = g(gnI,i, gnk )I, i> k. 

The S-Algorithm. Obtained by applying the procedure 0 to the main rule (9). 

Sg n) = Sn, g(n.) = gi(n), S(n) = f(Sk(n 1l), D(n)) 

with 

D (n) = h(Sn)l, g(n)l k) g(n = f(g(n)li_ g(n)l k k- k- k) k~j gk- 1'gk- 1k' i> k 

The s-Algorithm. Obtained by applying the procedure 0 to the auxiliary rule (10). 

SOn) S n, g, = gi(n), S4n) = f(Sn)j, gkn)l) 

with 

g(n) = f(g(n+l D(n?)) i> f(g(l1), Dr) i >k, 

D(ni) = h(g(n)l i, g(n)lk)i>. 

The a-Algorithm. Obtained by applying the procedure 0 to the main rule (9) and to 
the auxiliary rule (10). 

aGn) = Sn, g(n) = gi(n), a(n) =f(a(n+1), Dn)), 

with 

Dkn) = h((nk )I, gk ) 1k), 

(n)? 
= 

(g(nI i) Dk ?) i > k, 

D(n) = h(g(n)l2i, gk(n1k), > k. 

If we denote, respectively, by Ml and M2 the main rule of the first and second form 
of the E-algorithm and by Al and A2 the auxiliary rules, then the preceding 
algorithms can be symbolically represented by 

T-algorithm: 0(MI) V Al, 
t-algorithm: Ml V 0(Aj), 
T-algorithm: 0(MI) V 0(A1), 

S-algorithm: 0(M2) V A2, 

s-algorithm: M2 V 0(A2), 

a-algorithm: 0(M2) V 0(A2). 

It is also possible to define and to study the following "crossing" algorithms: 
0(MI) V A2, Ml V 0(A2), 0(MI) V 0(A2), 0(M2) V A1, M2 V 0(A1), 0(M2) V 

0(Aj). 
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As usual for convergence acceleration methods, in most of the cases the computa- 
tional complexity of the preceding algorithms is much less than the complexity of 
computing the terms of the sequence to be transformed. 

4. Properties. After defining these new algorithms, the first question which arises 
is to know which terms of the sequence (Sn) and of the sequences g, are needed to 
implement these transformations. For the E-algorithm, this question was automati- 
cally solved by looking at the determinantal definition of the E-transformation. It is 
no more the case for the twelve preceding 0-type algorithms associated with the 
E-algorithm since, up to now, they are not yet defined by determinantal expressions; 
the only possible way of answering this question is to give a recursive proof by a 
direct look at the rules of the algorithms. One must first remark that the two rules of 
the E-algorithm have the form 

c =a - 
a 

bb=a + d (formi1), n n A bn n n n(frl) 

c =a +l- \b bn+l a? + en (form2). 
n 

If we apply the procedure 0 to these rules we get 

O(Cn) = f(an, dn) = an - d dn (form1), Lad 

O(Cn) = f(an+ , en) = an - 

a 
+ae1 (form2). 

Thus, in both cases, the computation of 0(cn) requires knowledge of a n a n + 
an+2, bn, bn+1 and bn+2. 

It is now easy to establish the following result (<- means "depend(s) on"): 
Property 1. In the T- and S-algorithms 

{n) (gi(n +j), j 0,. . ,k), 

I(g.(n + j), m = 1,. . .,k andj = 0,. . .,k), 

D(n)[(Sn+j, j=0,. ...,2k - 1), 
k 

(gm,(n + j), m = 1,...,k andj = 0,...,2k -m), 

T (n) and Skn) < (Sn+j, i = { , ..2k), 
k(gm (n +j), m 1,...,k andj = 0,...,2k + 1-rm). 

In the t- and s-algorithms 

g(n f (g,(n + j), j 0,... ,2k), 
g 

(gm(n + j), m =1,.. .,k andj = 0,... ,2k), 

D( { (g1(n + j), j= 0 ... ,2k - 1), 
kj 

(ge (n + j),m = I..... k andji= 0...,. 2k - 
1) 



SOME NEW CONVERGENCE ACCELERATION METHODS 139 

In the T- and a-algorithms 

f (g,(n +j), J = 0,... ,2k), 
gkl (gm(n + j), m = l,. . .,k andj = 0,. . .,2k), 

D f(n) (g,(n + j), j= 0,.. .,2k - 1), 
k,i (gm(n+j),m l,...,kandj=0,...,2k- 1), 

D(n) ;(Sn+j, j = 0, ...,2k - 
1), 

(gm(n + j), m = 1, ... ,k andj = 0,... ,2k). 

Similar results could be obtained for the six remaining algorithms. 
The second property to be studied is called quasi-linearity. 
Property 2. Let {TTk)} be the results obtained by applying the T-algorithm to the 

sequences (Sn) and (g, ( n)). The application of the T-algorithm to the sequences 
(aSn + b) and (b,gj(n)), where a, b, =# 0 produces the results {aTk + b}. The same 
property holds for the eleven other 0-type algorithms associated with the E-algorithm. 

Proof. It immediately follows from 

f((aan + b), (cbn)) = af((an), (bn)) + (b), 

g((aan + b), (cbn)) = ag((an), 0n)) 

h((aan + b), (cbn)) = ah((an), 0n)) 

where (b) is the constant sequence whose terms are all equal to b. EZ 
In the algebraic theory of a sequence transformation the most important point is 

the study of its kernel, that is, the set of sequences which are transformed into a 
constant sequence. When the transformation is defined by a ratio of two determi- 
nants as is, for example, the case for Shanks' transformation and Richardson 
process, the study of the kernel is, in general, easier than when the transformation is 
only defined by a recursive algorithm. Thus, for the 0-algorithm it was only possible 
to find the kernel of the transformation 02: (Sn) -*2(n)) [6]. The same trouble arises 
with the 0-type algorithms for which only the kernel of the transformation f is 
known. In my opinion it will only be possible to progress in this direction if a 
determinantal definition of the transformation is found (if it exists). 

THEOREM 1. Let us assume that Vn, bn # 0. A necessary and sufficient condition that 
Vn, f(an, b,n) = S is that 

3c E C: Vn, an S + cbn. 

Proof. The condition is sufficient. We have 

f(an, bn) = (bn+jan -bnan+I)lAbn 

If the condition holds, then 

f(an, bn) = (bn+l(S + cbn) - bn(S + Cbn+1))/Ibn = Sbnl/\bn = S 

since A bn # 0. 



140 CLAUDE BREZINSKI 

Let us now prove that the condition is necessary. We assume that Vn, f(an, bn) - S. 
This means that Vn, Abn 7# 0 since otherwise the ratio would be infinite or 
indefinite. Thus we have 

SAbn = bn+jan-bnan+1 or bn?n(an-S) = bn(an+l -S). 

Since Vn, bn =# 0, then 

( an -S )Ibn = (an+ l -S )Ibn+ 1 

Therefore, 3c C C: Vn, (a - S)Ibn b c and the result is proved. O 
The set of such sequences is called the kernel of f. 
Remark 1. The condition Vn, bn =# 0 is not needed to prove the sufficiency, but it 

is obligatory for the necessary condition as showed by the following example: 

aO - S + abo, 

a, = S + ab,, b 0, 

a2 =SI b2=O, 

a3 = S + cb3, b3 0, c 7# a, 

a4 = S + cb4 . 

Thenf(ai, b,) = S for i = O,. . . 3. 
Remark 2. Let us assume that the sequence (an) converges. The condition Vn, 

f(an, bn) = S does not imply that S is the limit of (an) as showed by the counterex- 
ample: 

Let (an) converge to S' # S and satisfy Vn, an :# S and an # 0. Then an S + 

bn with bn an - S, and Vn, f(an, bn) = S. Thus a converging sequence can be 
transformed into a sequence converging to a different limit. We shall say that the 
transformation is not quasi-regular [7]. This is, in particular, true for the E-transfor- 
mation. 

Remark 3. We have f(an, bn) = A(anlbn)( \(l b,). The result of Theorem 1 can 
be compared with the result given by Cordellier for the 6-algorithm [6]. 

Let us now apply the preceding theorem to the 6-type algorithms when k - 1. We 
must first notice that Vn, E(n) -t() = S(n), T(n) - T(n), S(n) = (n) We shall 
denote, respectively, by (XEI, (XT, and %S' the kernels of the transformations El: 

(Sn) -- (E(n)), T1: (Sn) (T"(n)) and S1: (Sn) - (S(n)). 

THEOREM 2. 

El Tl' 
6 

El C 6' S (XT, # (X 

Proof. From Theorem 1, 9E, is the set of sequences such that Vn) g,(n) 7# 0, 
L\g1(n) =# 0, and Sn - S = cgl(n). AIYT, is the set of sequences such that Vn, 
D(n) 7#0, AXD (n) # 0, and Sn - S = aD(n) with D(n) = -(ASn1Ag1(n))g1(n). If (Sn) 
E (9I, then ASn = cAgl(n), and thus ASSnIlzgl(n) = c since t\gl(n) :# 0. It follows 
that D(n) = -cg,(n), and therefore Vn, D(n) 7# 0, AD(n) 7# 0, and Sn -S aD(n) 
with a -1, which shows that (Sn) E (YTI and 9I C TI From the example 

Sf wnh gl(n) a nd 0, we s ta t 

for which E(n) = AV(,,l-)/(/A- 1) and T,(n) = , we see that the inclusion is strict. 
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An analogous proof will show the second inclusion. The kernels of T, and S1 are 
not identical as showed by the examples: 

Sn 1/ (n + 1), gl(n) n then (Sn) E GLSI and (Sn) S (J T, 

Sn 1/ (n + 1), g,(n) n + 2 then (Sn) E T, and (Sn) XI is,. D- 

We shall now study the convergence and convergence acceleration conditions for 
the 0-type algorithms in order to explain their superiority on the E-algorithm. 

A sufficient condition that lim 1E() - S is that lim,1< Efnl - S and that 
3a < 1 < /: Vn > N, g(n+ I)lg n)I k [a, /3] [5, Theorem 4]. The same condition 
insures the convergence of (Tkn)) when n goes to infinity by replacing gI2 k by D(tl) 
But 

r)(n+ ) ATn+ 1) gkn+1) l/(n-)I 

-ALkn Tk( n ) gkn +l klgkn +1 )k Dk__ 
k 
gk1j' ,k k- 1, 

and thus we get 

THEOREM 3. A sufficient condition that limn 0 S is that limTko Tk(")l 
lim g(n-1) Igk-k - b# 7/ I and that 3 a < 1< </: Vn > N, ATk(t' I ')/ATk(t) l 

[a,/3]. 

It must be noticed that these conditions are stronger than the convergence 
conditions for the E-algorithm but that they are only sufficient conditions. Similar 
results can also be obtained for the other 0-type algorithms. 

Let us now look at convergence acceleration conditions. Let us assume that 
mo gk - 1, kl?/g)-1, k =bk 7# 1. Then a sufficient condition for (E(n)) to converge 

faster than (E(n)2) is that [5, Theorem 6] 

lim (E(n l1) - S)/ (E(n) - S) bk 

This is a very strong condition which is only satisfied, in practice, for restricted 
classes of sequences [5, Theorem 7] or for a very appropriate choice of the auxiliary 
sequences g,. For the T-algorithm the situation is much more interesting as showed 
by 

THEOREM 4. If lim , g(n I )Ig(n)k bk 7 0 I and if 

lim (Tk(n) - I (Tk(I - S) - ck # O 1 
- 00 

then Tk -S = o(Tk(n)- )I 

Proof. From the rule of the algorithm we have 

T(n) - S k In - S n 
1j/ ;nT,!i1jI) g(n+ I (n) k k__I_Ak__I_g-l ,k k-,k 1 

n)- S T,In - S ) t T,i n1 g(nk 1)gh-l j 
If the conditions of the theorem are satisfied, then, by a classical result, 

lim Agk-Ik kg k 
- bk and lim kXT-1 kiT,()1 ck, 

n o-oc 00 

and the result immediately follows. OI 
As we see, the condition ck bk is no longer necessary as it was for the 

F-algoritm . E-albgorithm. 
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Remark 4. Usually, in practice, it is difficult to check if the second condition of 
the theorem is satisfied because it involves the unknown limit S. Using a result 
proved by Delahaye [9], we know that if 

lim AT(k I k Ck +C?, -1, + 1, 
n - 00 

then 

lim (Tk(nl) - s)k(T,< S) - Ck, 
n- x 

and consequently we shall have T -S (T(n)-S). 
As for Theorem 3, the conditions of Theorem 4 are only sufficient. Similar results 

can also be obtained for the other 0-type algorithms. 
Let us give two examples to illustrate the preceding theorem: 

St? = n V, g, (n) 
- Fun withA Ot : , I I 1, Iy tI and X == tt. 

We have g1(n + l)/gI(n) = y and lim,n -Sn+IISn = A. Thus the sequences (E(") 
and (T('1)) tend to zero. Since X =# p, (E(n)) does not converge faster than (Sr) 

E"t) = 'l(n(,u-AX) -A)/ (,u- 1), lim E(n)IS,, 
- 

(tt - )/ (t - 1). 
,, - 00 

The conditions of Theorem 4 are satisfied, and (T,(n)) converges faster than (Sn): 

T1( n) - V+2/ (2X(A - 1) -n(l -_A)2). 

(Tl( n)) does not depend on y. It can be said that the T,-transformation corrects, in 

some sense, the bad choice which was made for the auxiliary sequence g1 (a good 
choice is, of course, g,(n) =A). 

If we now consider S,, l/(n + 1) with g,(n) n + 2, then E(n) 2/(n + 1) 
and T,(') = 0. For this example the conditions of Theorem 4 are not satisfied, which 

shows that they are only sufficient. 

5. Recursive Use of the Procedure 0. In Section 2 we saw that the procedure 0 

consists in replacing an algorithm of the form c, -a,1 + bn by an algorithm of the 

form 

0(c,) = f(a,,, b,,). 

This new rule can be written as 

0(cj) 
- a,1 + (f(a,n, bn) - a,), 

and thus we can again apply the procedure 0 to this rule to get 

02(Cj) 
- 

0(0(Cj7)) = f(a,1, f(an bn) - an) = f(an 0(c,1) - a,). 

This recursive use of the procedure 0 can be continued, and we finally obtain the 

following algorithm 

00(c,j) =f (a,1, bn) = a + b,7, 

k(c,1) f k(a", bn) = f(an, f k(a, bn) - an) 

=f(a,, 0k-(Cn) - an), k = 1,2,... 

The k th iterated application of the procedure 0 consists in replacing the rule 
C = a,1 + b, by 0 k(c,7) f k(a, b). 
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Heuristically this recursive use of the procedure 0 is justified by the fact that if 
0k- '(C) is a good approximation of the limit S of the sequence (a,,), then 0k(C,) 

might be a better approximation of S. Hence if bn = S - an, then Vn, f(an, S - an) 
Sif Vn, Aan #0. 
This recursive use of the procedure 0 can be applied to both forms of the 

E-algorithm and to the twelve 0-type algorithms associated with it as well. 

6. Numerical Examples. Some numerical examples have been carried out on the 
IRIS 80 computer of the University of Lille in double precision with approxi- 
mately 16 exact decimal digits. 

For the sequence Sn (0.95)n+' I(n + 1) the following results have been obtained 
with the choice g,(n) = \Sn+, which leads to Shanks' transformation for the 
E-algorithm. 

T-Algorithm. 

(T(n) ) 
(0ln)) 

(T2(n)) (T3(n)) 
(0()) 

0.95000000 
0.45125000 
0.28579167 0.05877243 
0.20362656 0.01932949 
0.15475619 0.00412200 -0.01399516 
0.12251532 -0.00242632 -0.01086415 
0.09976247 -0.00523243 -0.00854903 0.00473557 
0.08292755 -0.00626256 -0.00715902 -0.00395274 
0.07002771 -0.00641662 -0.00646418 -0.00548366 -0.00602525 

The results with the other algorithms are not better than the preceding ones. 
However it must be noticed that they are better than the results obtained by the 
E-algorithm, for which we get 

E-Algorithm. 

(E(n)) (E(n)) (E3(n)) (E(n)) 

0.20365202 
0.12257430 
0.08302371 0.07015522 
0.06000750 0.04522404 
0.04519982 0.03113841 0.02778396 
0.03503673 0.02236704 0.01826045 
0.02773985 0.01655228 0.01254054 0.01147972 

Let us now consider the sequence Sn - (-0.95)n+/1(n + 1) with the same choice 
for the g,'s. We shall compare the sequences (S3k), (Ek)) (Tk()) (Sk )) (tk)) 

(sM')), (Tk0)), and (a(?)) because the computation of their respective terms requires 
knowledge of the initial sequence up to the same term S3k. 
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k (S3k) ~~~(Ek(k)) (T(k - )) (S(k - 1)) 

1 0.20362656 0.00832445 -0.00471336 -0.00684002 
2 -0.09976247 -0.00006298 -0.00000083 0.00002024 
3 0.05987369 0.00000046 0.00000002 -0.00000005 
4 -0.03948785 < 10-8 < 10-8 < 10-8 
5 0.02750792 < lo-8 < lo-8 < 10-8 

k (tt)(5() (?) (f(0)) 

1 0.00832445 0.00832444 -0.00471336 -0.00684002 
2 -0.00016970 -0.00028390 0.00001704 0.00001055 
3 0.00002136 0.00002510 -0.00000008 -0.00000034 
4 -0.00000313 -0.00000363 0.00000003 -0.00000003 
5 0.00000118 0.00000052 < 1o-8 < 10-8 

Let us now consider the sequence S, - (n + 1)/(n + 2), which is a logarithmic 
sequence and, thus, is difficult to accelerate. We get the following results with the 
choice g1(n) = AS, 1 

k (S3k) (E(k)) (T/k-l)) (S(k-1)) 

1 0.80000000 0.87500000 0.94444444 1.00000000 
2 0.87500000 0.94444444 0.99900000 1.00000000 
3 0.90909091 0.96875000 1.00000256 1.00000000 
4 0.92857143 0.98000000 0.99999998 1.00000000 
5 0.94117647 0.98611111 0.99999999 1.00000000 

k (t4l)) ks l) ( TI) ) k ()) 

1 0.87500000 0.87500000 0.94444444 1.00000000 
2 0.93819444 0.92604167 0.99672084 1.00000000 
3 0.96490310 0.94590545 0.99973882 1.00000000 
4 0.96804451 0.98868613 0.99983712 1.00000000 
5 1.04429718 rounding errors 0.99999770 1.00000000 

We must remark that, for the preceding sequence, the conditions of Theorem 1 hold 
with c -2 and that, Vn, S(n) - (n) = 1, as can be checked from the numerical 
results. 

To exemplify the numerical instability of the preceding algorithms let us give the 
numerical results obtained when programming the s-algorithm in single precision for 
the sequence Sn = (-0.95)n+ '/(n + 1). We get 

1s ') 
- 0.00832444, 

s(1) - -0.00028397, 

s(1) 0.00002587, 

4s = 0.00122677, 

s()= 0.01454507. 
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